Equality In Lazy Computation Systems

*

Douglas J. Howe
Department of Computer Science

Cornell University
Ithaca, New York 14853

Abstract

In this paper we introduce a general class of lazy com-
putation systems and define a natural program equiv-
alence for them. We prove that if an eztensionality
condition holds of each of the operators of a com-
putation system, then the equivalence relation is a
congruence, so that the usual kinds of equality rea-
soning are valid for it. This condition is a simple syn-
tactic one, and is easy to verify for the various lazy
computation systems we have considered so far. We
also give conditions under which the equivalence co-
incides with observational congruence. These results
have some important consequences for type theories
like those of Martin-Lof and Nuprl.

1 Introduction

In a lazy programming language, evaluation termi-
nates when the outermost data constructor of the re-
sult becomes known. Thus a pair (a, b) is considered
as fully evaluated regardless of what ¢ and b are.
This paper addresses the problem of reasoning about
program equivalence in lazy languages. We define a
broad class of such languages, and define a natural
notion of program equivalence for them. In order for
normal equality reasoning to be valid for this equiva-
lence, it must be possible to replace a program frag-
ment by an equivalent one in any context. Qur main
result is a reduction of this property to a condition on
each of the individual language constructs. The con-
dition seems to be generally easy to verify; we have
checked it for a variety of examples.

The original motivation for this work was to jus-
tify certain useful kinds of type-free inference for
the type theory of the Nuprl proof development sys-
tem [8, 3, 2]. The type theories of Nuprl and Martin-

*This research was supported in part by NSF grant CCR-
8616552 and ONR grant N00014-88-K-0409

Lof [10] are based on an untyped computation sys-
tem. A type system is constructed by selecting cer-
tain terms of the computation system to denote types
and by specifying for each type what terms are its
members and when two members of the type are to
be considered equal. A major practical problem with
these type theories has been the lack of inference rules
that do not involve reasoning about types. For ex-
ample, a proof of the equality of two types that differ
only in the contraction of a f-redex would in gen-
eral require finding a type for the redex and proving
that the type was appropriate. More generally, al-
though it seemed very likely that the judgements of
the type system were preserved under the reductions
that generate the evaluation relation of the computa-
tion system, no proof of this fact was known.

An attempt to prove that a binary relation R on
closed terms is respected by the judgments of the type
system reveals (see, for example, [2]) a sufficient con-
dition: that R is a congruence (that is, R is respected
by the operators of the term language) and R C [R],
where a [R] b if, roughly, whenever evaluation of
a terminates then so does the evaluation of b, and
furthermore the resulting values have the same out-
ermost form and the corresponding components are
related by R. For example, in the case of the A-calcu-
lus, a [R] ¢’ means that whenever a evaluates to an
abstraction Az. b, a’ must evaluate to some abstrac-
tion Az’. b’ such that b[c/z] R b'[c/z’] for all closed
terms c¢. Since one of our goals is to justify as much
type-free inference as possible, we desire the largest
possible R satisfying these conditions. We take the
largest R satisfying R C [R] and then prove it is a
congruence. We call this a mazimal congruence.

We start by defining a lazy computation system or
lcs. The class of lazy computation systems is a direct
generalization of the computation system of Martin-
Lof’s type theory [10]. An lcs consists of a term lan-
guage, where the operators of the language may have

variable-binding structure, together with an evalu-
ation relation which can be any relation on closed
terms that is the identity function on those terms
that are taken to be values. For an lcs & we define
a preorder < on the closed terms of & as the great-
est fixed-point of []. We then define an eztensionality
condition on the operators of § and show that if every
operator is extensional (that is, S is an eztensional
les) then < is a congruence. We have constructed
various examples of extensional lcs. The examples
include usual kinds of lazy functional computation,
as well as nondeterministic and call-by-value compu-
tation. In each example, the verification of operator
extensionality was simple.

A natural notion of program equivalence, at least
for deterministic computation, is observational con-
gruence, where two programs are equivalent if they
have the same observable behaviour in all program
contexts. For an lcs we take the basic observation to
be termination of evaluation together with the iden-
tity of the outermost operator in the resulting value.
We prove that in any deterministic lcs that satisfies
a minimal computational adequacy condition, obser-
vational congruence is the same as the equivalence ~
defined as <N >.

In an lcs which is the A-calculus with some added
constants and reductions, this equivalence of ~ with
observational congruence has become known as 0b-
servational extensionality [6]. In this setting, a < b if
and only if for all sequences of closed terms ¢1, .. ., ¢,
if evaluation of ac;...c, terminates, then so does
evaluation of bc; ...c, and the values have the same
outermost form. It is easy to show that < being a
congruence is equivalent to observational extension-
ality. In his paper on the lazy A-calculus [1], Abram-
sky proved observational extensionality for the pure
A-calculus and several simple extensions. His proofs
involve a complicated excursion through domain the-
ory and domain logic, and his method does not ap-
pear to generalize. In [6], Bloom proves observational
extensionality for a class of extensions to LCF. His
proof applies to a special class of languages; for ex-
ample, they must be simply typed. In [5], Berry gives
a proof which when appropriately specialized gives a
simple argument from first principles that the pure
lazy A-calculus is observationally extensional. This
proof can be modified to work in several simple exten-
sions of the A-calculus, but such modifications seem

ad hoc.

In contrast, our results apply to a broad class of
languages, and we reduce < being a congruence to
a condition on evaluation that appears to be very
simple to verify in general. For example, the verifi-

cation for each of the operators in Martin-Lof’s type
theory can be done in a few lines. In addition to
easy verification, the form of our extensionality con-
dition permits the inclusion of the condition in an
open-ended account of computation in intuitionistic
type theory. From an intuitionistic viewpoint, open-
endedness, which requires that the definition of each
operator and the definition of evaluation anticipate
the introduction of further operators, is essential if
type theory is to be a foundation for constructive
mathematics. For a discussion of some of the issues
related to type-theoretic open-endedness, see [3].

Our presentation assumes a basic familiarity with
such syntactic notions of the A-calculus as free and
bound variable and substitution. We will use

blay,...an/21,. .., 20]

to denote the simultaneous substitution in the term
b of the terms a1, ..., a, for the variables z;, ...,
z,. We will write b[ay, ..., a,] when the variables z;

.., zp can be inferred from context. In Section 2
we define our class of lazy computation systems. In
Section 3 we prove our main result, that in an exten-
sional lcs ~ is a congruence. We also briefly discuss
observational congruence. In the last section we dis-
cuss some applications.

2 Lazy Computation Systems

Define a lazy computation language to be a triple

(0, K, «) such that
o O is a set,
e K C O and

e acO—={(k,. ... ky)|n ki>0}.

We call the members of O operators, and the members
of K canonical operators. For 7 € O, a(7) is the arity
of 7 and specifies the number and binding structure
of the operator’s possible arguments.

Let L be a lazy computation language (O, K, o).
To define the set T'(L) of terms over L we first induc-
tively define sets B, (L) for n > 0 as follows. Fix an
infinite set V of variables.

e V C BO(L)

o Ift € By(L) and z1,...,z, € V are distinct then
Ty, ..., 2.1 € By(L).

o If a(r) = (ky,...
i < n then 7(4,. ..

k) and t; € By, (L) for 1 <
,tn) € Bo(L).

Let T(L) = Bo(L). We give variable-binding
structure to T'(L) by specifying that in a member
T, ..., 2. b of By(L) the free occurrences of z;, ...,
Z, in b become bound. Define T°(L) to be the set
of all closed terms (terms without free variables) in
T(L). The closed terms will be the programs of our
computation systems. A canonical term is a closed
term of the form 7(4,...,%,) where 7 is a canoni-
cal operator. The canonical terms will be exactly the
results of evaluating programs; thus a term will be
considered to be fully evaluated exactly if its outer-
most operator is canonical. A noncanonical term is a
closed term that is not canonical. We will often use an
overline notation for a (possibly empty) sequence of
operands; for example, we write 7(1) for 7(#1, ...,).
We identify terms that are a-equal (the same up to
renaming of bound variables).

A lazy computation system, or lcs, is a lazy compu-

tation language L together with binary relations LA
on T°L) (k> 0) such that

e forall k > 1,if a £ b then a is noncanonical
and b is canonical, and

e a2 bifand only if @ is canonical and a = b.

Define a — b if there is some k& > 0 such that a L.
We call — the evaluation relation of the lcs; b 1s a

value of a if a — b. Define «a <k b if there exists
a j < k such that a 2. b. The evaluation relation is
deterministic if for every closed a, b and ¢, a — b and
a — cimply b = c¢. Note that since we are identifying
a-equal terms, evaluation must respect a-equality.
For example, the usual untyped A-calculus can be
viewed as an les. Take O = {A,ap} and K = {A}.
Define o by a(A) = 1 and a(ap) = (0,0). Write Az. b
for A(z. b), and a(b) for ap(a,b). Define « 2
if @ = a" = Az.b for some b. For k > 1, define

¢ 5 ¢ if a4 is of the form (Az.b)(a1)...(an) and
blai/z](as) ... (an) *=' ¢/, Call this les A.

To simplify the presentation of our work we use
a few notational conventions. Let R be a binary

relation on T(L). If t = 2,...,2,. b and ¥ =

/

z{,...,z}. b are members of B,(L), then when we

write ¢ R t' we mean that there exist distinct vari-

ables 21, ..., 2, not free in t or t' such that
bz, ..y zn/21, . zn) RV [z, . 20 /2f, .. 2]
Ifr(t,...,tn) and 7(, ..., t,) are members of T'(L),

then when we write ¥ R ¢/ we mean that ¢; R t] for
each 7, 1 < ¢ < n. Finally, if R is a binary relation
on T°(L), then a R b for a,b € T(L) means that

o(a) R o(b) for every substitution ¢ such that o(a)
and o(b) are closed.

We could have simplified the syntax of an lcs by
taking lambda-abstraction as the only binding con-
struct. However, this would not appreciably simplify
what follows, and it would be more difficult to di-
rectly apply our results to the type theories we are
interested in.

The decomposition of evaluation in an lcs into a
set of relations indexed by N is somewhat arbitrary.
With a few trivial modifications to our definitions
and proofs, N can be replaced by an arbitrary well-
founded relation.

3 Equality

For this section we fix an arbitrary les & with lan-

guage L = (0, K, a) and evaluation relations {L}

Definition 1 Let R be a binary relation on T°(L).
For closed a and a', define a [R] a' if whenever a —
0(1) for some canonical 0(%) there is a closed 0(t')
such that a' — 0(t') and T R V.

Definition 2 Define < as the largest relation R on
closed terms such that R C [R].

This exists since [-] is monotonic, and we have <=[<].
(In the case of deterministic evaluation, we could de-
fine < as(),so <n, where <, relates all closed terms
and <,, ;1 is [<,,].) This relation, hence also its exten-
sion to T'(L), is reflexive and transitive. The equiva-
lence relation we are interested in is defined as follows.

Definition 3 a ~ b if a < b and b < a.

3.1 Extensionality

We want ~ to be a congruence with respect to the
operators of L. In other words, we want 7(7) < 7(¢')
whenever 7 < #/. We define a relation that has this
property by definition and that contains <. We will
then show that this is the same as < when each op-
erator of § satisfies an extensionality condition.

Definition 4 Define a <* b, for a,b € T(L), by
induction on the construction of a.

e For a variable z, x <* b if x < b.

. T(D
T(t

(1)

<* b if there is a (1) such that T <* t' and
<b.

Informally, a <* b if b can be obtained from a via one
bottom-up pass of replacements of subterms by terms
that are larger under <. The following are immediate
consequences of Definition 4.

o T(H) <F () ifT <.
e { <* {for all t.

e If ¢ <* band b < ¢ then a <* c.

If « < b then a <* b.

For any substitution ¢ of variables for variables,
if ¢t <* ¢/ then o(t) <* o(¥').

In what follows, these facts will be used without ex-
plicit reference.

Lemma 1 If a <* o' and b <* b’ then bla/z] <*

b'[a'/z].

Proof. The proof is by induction on the size of 5. In
the case where b is the variable z, we have z < b’, and
so a’ < b'[a’/z] by the definition of < on open terms.
Since a <* o', @ <* b'[a’/z]. In the case that b is
a variable y # z, since y < b’ we have y < b'[d'/z].
For the induction step, we have b = 7(7), T <* ¢/ and
(1) < b r(D)[a/z] <* 7(¥')[d’ /2] follows from the
induction hypothesis. Also, 7(#')[a’/z] < b’[a’/z], s0
r(@[af2] <* b[d'/2]. O

Lemma 2 If 6(1) and b are closed terms such that
(%) is canonical and 6(1) <* b, then there is a closed
0(t') such that b — 0(1') and T <* /.

Proof. The definition of <* gives a term #(#") such
that 7 <* ¥/ and 0(t") < b. By Lemma 1 and the
definition of < on open terms, we may assume that
0(t") is closed. Since < = [<], there is a closed 0(')
such that b — 6(¢’) and ¢/ < t. Since T <* 7,
<. 0O

We have defined <* to be a minimal congruence
refined by <. Since < is defined as the maximal fixed-
point of [-], to show <* is in fact the same as < it suf-
fices to show that <* respects evaluation. To estab-
lish this condition it suffices to show that each oper-
ator inductively preserves it: given a pair of operand
sequences t and ¥ for an operator 7, if T <* ¥ and the
condition is inductively assumed to be true, then the
values of 7() and 7(#') are related by <*. We call
this property of an operator “operator extensional-
ity” because proving it amounts to showing that two
applications of an operator are ~ if the operands are,
so that the value of an application depends only on
the values of the closed instances of the operands.

Definition 5 An operator T is extensional if for any
closed terms 7(1), 7(') and a, and for any k > 0, if

<k
3. for every closed u, v’ and v, if u — v’ and u <*
v then v’ <* v,

then a <* ().

An lcs is extensional if all of its operators are. Note
that canonical operators are always extensional since

if 7 is canonical and 7(%) £ 4 then k =0 and (1) =
a.

Definition 5 was simply abstracted from the proof
of Theorem 1, from an argument by induction on &

that if ¢ <* b and « £ @ then o <* b. This ar-
gument shows that <* respects evaluation, since if
a — a' and a <* b, then o’ <* b exactly if there is
a b’ such that & — b’ and a’ <* b’ (this is an easy
consequence of Lemma 2 and the fact that & — b’
implies §' < b).

We can now state and prove the main result.

Theorem 1 If S is extensional then for all closed a
and b, a <* b implies a < b.

Proof. We first show by induction on & that for every
closed a, @’ and b, if a £ ¢ and a <* b then a’ <* b.
If ¥ = 0 then ¢ = a’. Suppose that k£ > 0, and write
a as 7(1). By definition of <* there exists # such
that 7 <* ¢/ and 7(#) < b. By Lemma 1, we may
take 7(#') to be closed. Since 7 is extensional, and
since our induction hypothesis is just 31in Definition 5,
a’ <* 7('). Since 7(') < b, we have a’ <* b.

Let R be the restriction of <* to closed terms. To
prove the theorem it suffices to show that R C [R].
Suppose, then, that ¢ R b and a — 6(%). By what we
just proved, 8() <* b. By Lemma 2, b — 6(¢) for
some t/ such that 7 <* #. By Lemma 1, 7 R ¢/. O

The following theorem is now easy to prove.

Theorem 2 Suppose that S is extensional. Then

1. for all a,b € T(L), a < b if and only if a <* b,
and

2. 4if r(T),7(t') € T(L) and if T ~ ', then 7(¥) ~

().

A converse property also holds. In any lcs where
() < 7(1') whenever ¢ < t/, < and <* are the same
and so every operator is extensional.

As an example, we verify that the les A (defined
in Section 2) is extensional. We only need to check
ap. Suppose, then, that f(a) and f'(¢') are closed,
f<fa<d, f(a) KA ¢, and part 3 of Definition 5
holds. There is a b such that f < e b, and so
Az.b <* f'. By Lemma 2, f' — Az.b' for some b’
such that § <* b’. By Lemma 1, b[a/z] <* b'[a’/z].
Since b[a/z] <4 ¢, ¢ <* ba'/z] < f'(a'), so ¢ <*
f(a").

An argument similar to the above shows that A
is extensional under call-by-value evaluation of ap-
plications. Nondeterministic lcs’s can be also be ex-
tensional. For example, suppose the operator amb
is evaluated as follows: if ¢ — ¢ or b — ¢ then
amb(a,b) — c¢. We show amb is extensional. Suppose

that a <* @', b <* b’ and amb(a, b) £ ¢. Either a &
cor b <F ¢ In the first case ¢ <* a < amb(d’,b")
and so ¢ <* amb(a’,b"). The other case is similar.

3.2 Observational Congruence

Define <; to be [true]. For a, b € T(L), define a < b
if Cla] <1 C[b] for all contexts C[] such that C[a]
and C[b] are closed. Define a to be observationally
congruent to b, or a ~¢ b,if a <o b and b < a.

Observational congruence need not be the same as
~ in an extensional lcs. First, the lcs might not have
“enough destructors”. For example, in A without ap
but with an additional O-ary canonical operator 6,
the terms Az. 6 and Az. Ay. 0 are ~ but not ~. Sec-
ondly, ~ and ~ ¢ will usually differ in the presence of
nondeterminism. For example, consider an lcs that
contains A, the integers and an operation amb such
that amb(a,b) — ¢ if and only if ¢ — c or b — c.
Then amb(Az.0,Az.1) and Az. amb(0, 1) are ~¢ but
not ~. An argument can be made, however, that the
bisimulation equivalence ~ is more appropriate for
nondeterministic programs than is the trace equiva-
lence ~¢. There does not yet seem to be a consensus
on this issue. (See, for example, [11] and [7].)

It is not very surprising that if we rule out nonde-
terminism and ensure that there are enough destruc-
tors, then ~ is the same as ~ . We make this precise
as follows.

Let @ be a canonical operator, and let (ki, ..., ky)
be its arity. S is computationally adequate for 8 if
for each 7, 1 < ¢ < n, and for all sequences of
closed terms ay, ..., ag, there is a context C[] such

that for all closed (%), if the ith component of 7 is
21, ..., 2, 1, then C[0(1)] is closed and

C[H(?)] ~ t[dl, ceey akl./zl, .. ,Z‘k]

k3

S is computationally adequate if it is computationally
adequate for each of its canonical operators. Finally,
S is deterministic if its evaluation relation is deter-
ministic.

Theorem 3 If S is a deterministic and computa-
tionally adequate extensional lcs, and if a <o b im-
plies that o(a) < o(b) for any substitution o such
that o(a) and o(b) are closed, then for all a,b €
T(L),a<c b a<hb.

The proof is straightforward. The condition that
<¢ be preserved under closing substitutions is satis-
fied if § contains A. It is easy to show that A satisfies
the hypotheses of Theorem 3.

4 Application To Type Theory

We briefly discuss the application of the preceding
results to Martin-Lof’s type theory [10]. We will
henceforth call this type theory ITT (for “intuition-
istic type theory”). The application to Nuprl’s type
theory is similar. In what follows we assume some
familiarity with I'TT.

At the base of I'TT is an untyped computation sys-
tem. A deterministic lcs is obtained directly from

this computation system by taking £ to be the re-
striction of evaluation to k reduction steps. The veri-
fications that the operators of this lcs are extensional
are simple, being very similar to the argument given
for application in A. This lcs is not computation-
ally adequate since there are no forms for analyzing
types. A computationally adequate lcs is obtained by
either deleting the types or by adding a universe elim-
ination form (which is in fact semantically sensible if
type equality is taken to be intensional).

The most important fact about ~ in ITT is that
it is respected by the type system: if T is a type
and 7' < 71" then 1" is a type and 7' = 1", and if
t € T and t <t/ then ¢t = ¢/ € 7. This fact can be
proven by induction on the construction of the I'TT
semantics given in [2]. We will not give the argument
here; instead, we will just sketch the portion of it
that deals with function types. Suppose then that
T is a type such that T — Il z : A. B, and that
T < T'. Since < C [<], there are A" and B’ such that
7' —Mz:A".B', A< A" and B < B’. By induction,
A’ is a type and A = A’. Consider ¢ = o’ € A’
Bla] and B[a’] are (equal) types, Bla] < B'[a] and
Bla'] < B'[a'], so by induction B’[a] and B'[a’] are
types with B[a] = B’[a] and B[a'] = B’[a’]. Thus
B'[a] = B'[d'], and so T” is a type which is equal to
T.

Suppose now that t € Iz:A.B and ¢t < t'. For
some b, t — Az.b, so there is a b’ such that t/ —
Az.b" and b < b’. Foreach a € A we have b[a] < b'[d]
so by induction b[a] = b'[a] € B[a]. It follows that
Ar.b=Az. b ellz:A.B.

Evaluation in ITT is based on reduction; it pro-
ceeds by successively replacing redices by their con-
tracta. Since the redex-contractum relation is con-
tained in ~ it follows that in reasoning about types
and their members we can freely replace redices by
contracta (and wvice versa). This was previously un-
known, although a complicated approximation to it
was developed for Nuprl [8]. Experience with Nuprl
(see [9] for example) indicates that this extension will
be valuable in practice.

Since ~ seems to be an intuitively appealing equal-
ity, at least for a deterministic extensional lcs, it is
reasonable to add a type to I'TT to represent it. This
would open the way to inclusion in implementations
of ITT such classical theorem-proving procedures as
congruence closure [12].

Acknowledgements

We owe special thanks to Stuart Allen for his substan-
tial suggestions regarding the presentation of these
results.

References

[1] S. Abramsky. The lazy lambda calculus. Pro-
ceedings of the Institute of Declarative Program-
ming, August 1987.

[2] S. F. Allen. A non-type theoretic definition of
Martin-Lof’s types. In Proceedings of the Sec-
ond Annual Symposium on Logic in Computer
Science, pages 215-221. IEEE, 1987.

[3] S. F. Allen. A non-type-theoretic semantics for
type-theoretic language. Technical Report 87-
866, Department of Computer Science, Cornell
University, September 1987. Ph.D. Thesis.

[4] H. P. Barendregt. The Lambda Calculus: Its
Syntaz and Semantics, volume 103 of Stud-
tes in Logic and the Foundations of Mathemai-
tcs. North-Holland, Amsterdam, revised edition,

1984.

[5] Berry. Some syntactic and categorical construc-
tions of lambda-calculus models. Technical Re-

port 80, LN.R.LA., 1981.

[6] B. Bloom. Can LCF be topped? flat lattice mod-
els of typed lambda calculus. In Proceedings of
the Third Annual Symposium on Logic in Com-
puter Science, pages 282-295. IEEE, 1988.

[7] B. Bloom, S. Istrail, and A. R. Meyer. Bisim-
ulation can’t be traced: Preliminary report. In
Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Lan-
guages, pages 229-239. IEEE, 1988.

[8] R. L. Constable, et al. Implementing Mathe-
matics with the Nuprl Proof Development Sys-
tem. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1986.

[9] D. J. Howe. Awutomating Reasoning in an Im-
plementation of Constructive Type Theory. PhD
thesis, Cornell University, 1988.

[10] P. Martin-Lof. Constructive mathematics and
computer programming. In Sizth International
Congress for Logic, Methodology, and Philosophy
of Science, pages 153-175, Amsterdam, 1982.
North Holland.

[11] R. Milner. A Calculus of Communicating Sys-
tems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, New York, 1980.

[12] G. Nelson and D. C. Oppen. Fast decision pro-
cedures based on congruence closure. Journal
of the Association for Computing Machinery,
27(2):356-364, 1980.

